eRHIC Luminosity and IR Issues

V.Ptitsyn, BNL

EIC Objectives

- e-p and e-ions collisions
- 5-10 GeV electrons; 25-250 Gev protons; 100 Gev/u Au
- Luminosity:
 - $ightharpoonup L = (0.3-1)x10^{33}$ for e-p collisions
 - $ightharpoonup L = (0.3-1)x10^{31}$ for e-Au collisions
- Polarized electron and proton beams
- Longitudinal polarization at collision point; 70%
- 35 nsec minimum separation between bunches

eRHIC collider layout

- e-ring is 5/16 of RHIC ring
- Collisions at one IP
- 28 MHz collision rate
- Unpolarized electron source
- Electron beam polarization by the synchrotron radiation
- e-ring lattice based on "superbend" magnets

Luminosity and beam-beam limits

Beam-beam parameters (round beams):

$$\xi_e = \frac{N_i}{\epsilon_e} \left(\frac{r_e Z}{4\pi \gamma_e} \right) \tag{1}$$

$$\xi_i = \frac{N_e}{\epsilon_i} \left(\frac{r_i(v/c)_i}{4\pi Z} \right) \tag{2}$$

Emittance subscripts are correct! For example, e-cooling reduces ϵ_i and allows N_e to be reduced.

Electron-ion luminosity can be written

$$L = F_c \xi_e \xi_i \sigma_e^{\prime *} \sigma_i^{\prime *} \left(\frac{4\pi \gamma_e \gamma_i}{r_e r_i} \right)$$
 (3)

• When beam-beam limits and angular apertures have been met, $\xi_e \xi_i \sigma_e^{\prime *} \sigma_i^{\prime *}$ is fixed.

Reasonably achievable values:

> Round beams:

$$v_x = v_y$$
, $\beta_x = \beta_y$ for electrons

Matching of the e and p beam sizes is crucial.

Superbend magnet

$$| au_{pol}^{-1} \propto \gamma^2 B^3$$

$$\Delta E_{SRL} \propto \gamma^2 B^2$$

The desired balance:

short polarization time at the acceptable level of synchrotron radiation losses

Flexible control of the beam emittance

Issues:

- Accomodation of radiated power (7MW radiated at 10 GeV)
- Orbit lengthening versus beam energy

Polarization time with superbend

Magnet bending field scaled proportionally with energy

$$au_{pol}^{-1} \propto rac{\gamma^5}{
ho^3}$$

• The superbend control of polarization time.

8-15min polarization time is achievable.

Beam emittance control

Electron emittance versus electron energy for different superbend settings

- Required normalized emittances for Au: 5-8 Pi mm*mrad at 5-10 GeV electron energies;
 - The cooling is required.
- Cooling of the proton beam is required for proton energies below 200 GeV

Main parameters for e-ring with superbends

Parameters	e-ring	ion ring	
		p	Au
C, m	1022	3833	
E, GeV	5–10	250	100/u
n _b	96	360	
$N_{\rm b}$	1.1011	1.1011	1.109
I, A ϵ_{rms} ,mm rad β^* , cm σ^* , mm	0.45 45-25 10 0.07-0.05 0.05	0.45 17-9 27 0.07-0.05 0.005	
L, cm ⁻² s ⁻¹		$(0.5-0.9)\cdot 10^{33}$	$(0.5\text{-}0.9)\cdot 10^{31}$

Required ion ring improvements

- Transverse cooling for ions and lower energy protons
 - Electron cooling ptoject in the RHIC is underway
- n_b from 60-120 to 360 bunches
 - Injection system development needed (from discussions with W.Fischer):
 - Faster injection kicker (~20 ns risetime) OR
 - RF Manipulation (barrier bucket cavity and bunch merging) in RHIC
 - Physical limitations to be studied and overcomed:
 - Vacuum pressure rise, electron cloud. Remedies:
 - Vacuum chamber baking; using solenoids; beam scrubbing; special coating
 - Long range beam-beam effects (issue for beam separation scheme).
- Reducing β^* from 1m to $\beta^* < 0.5$ m
 - Interaction region re-design
 - Proton (ion) bunch length reduction issue
 Longitudinal cooling (electron, stochastic) is required

Pressure rise, electron cloud examples (S.Y.Zhang + pr/ec team)

Pressure Rise at Injection, I

Pressure rise with 110 bunches of Au ions

Electron detector signal at IR12 at 112 bunches proton beam studies

Parasitic beam-beam with 110 proton bunches

Lifetime deterioration while filling another ring

Resulting bunch pattern

IR Design Criteria

- ➤ Separation scheme to avoid parasitic beam-beam collisions (35nsec distance between bunches).
 - The separation should work well in all energy range: 5-10 GeV electrons, 25-250 GeV protons.
- Focusing to low β* in both rings. What is lowest β* achievable?
- Longitudinal polarization in interaction point.
- Minimal depolarization from separation and spin rotation schemes.
 Spin transparency conditions
- Detector background, protection from synchrotron radiation issues

IR Design

Horizontal separation scheme

Vertical separation scheme

- IR development proceeds in close link with the detector design
- Detector background and protection from synchrotron radiation issues

Beam separation

Summary:

- Presently we have polarized e-p and unpolarized e-ion beam collisions in the center of mass energy range of 30-100 Gev and at luminosities up to 0.9×10^{33} cm⁻²s⁻¹ for e-p and 0.9×10^{31} cm⁻²s⁻¹ for e-Au collisions.
- □ Should we aim to higher luminosity number? Which number?
- □ Some quite urgent interaction region design work is neccesary to get a clear solution for it in coming monthes.